142 research outputs found

    Double courage, women as translation pioneers

    Get PDF
    En muchas teorías traductológicas se ha evidenciado un paralelismo entre el estatus del texto traducido, considerado inferior a la obra original, y el de las mujeres, subestimadas tanto en la sociedad como en la literatura. Por lo tanto, en las últimas décadas, la perspectiva de género se ha ocupado de rescatar el trabajo de las traductoras y de de-construir una teoría que no había incorporado a las mujeres en el proceso de estudio del fenómeno y en la reflexión crítica. En concreto, en este artículo pretendemos dar una muestra de la innovación que las mujeres han aportado en este campo y de las estrategias que han llevado a cabo para subrayar su identidad en el texto. Debido a la centralidad del mundo anglonorteamericano en las especulaciones de género sobre traducción, nuestro recorrido se fundamenta sobre todo en el trabajo de las investigadoras y traductoras canadienses, para luego abrirse a un breve estado de la cuestión acerca de la recepción que su pensamiento ha tenido en el contexto español.Many translation theories pointed out a similarity between the status of the translated text, which was considered as inferior to the original, and the women’s one, because of their underestimation both in society and literature. For this reason, during the last decades, gender perspective has tried to recover translatress’works and to deconstruct a theory that hadn’t involved women in its studies on the translation process. In particular, in this article we would like to show women’s innovation in this field and the strategies they have created to underline their identity in the text. Because of the importance of Anglo-American theories about gender and translation, our work is primarily based on feminist translation school in Canada, in order to analyse, then, its reception in the Spanish context

    Oral contraceptives combined with interferon β in multiple sclerosis

    Get PDF
    Objective: To test the effect of oral contraceptives (OCs) in combination with interferon b (IFN-b) on disease activity in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: One hundred fifty women with RRMS were randomized in a 1:1:1 ratio to receive IFNb-1a subcutaneously (SC) only (group 1), IFN-b-1a SC plus ethinylstradiol 20 mg and desogestrel 150 mg (group 2), or IFN-b-1a SC plus ethinylestradiol 40 mg and desogestrel 125 mg (group 3). The primary endpoint was the cumulative number of combined unique active (CUA) lesions on brain MRI at week 96. Secondary endpoints included MRI and clinical and safety measures. Results: The estimated number of cumulative CUA lesions at week 96 was 0.98 (95% confidence interval [CI] 0.81–1.14) in group 1, 0.84 (95% CI 0.66–1.02) in group 2, and 0.72 (95% CI 0.53–0.91) in group 3, with a decrease of 14.1% (p 5 0.24) and 26.5% (p 5 0.04) when comparing group 1 with groups 2 and 3, respectively. The number of patients with no gadoliniumenhancing lesions was greater in group 3 than in group 1 (p 5 0.03). No significant differences were detected in other secondary endpoints. IFN-b or OC discontinuations were equally distributed across groups. Conclusions: Our results translate the observations derived from experimental models to patients, supporting the anti-inflammatory effects of OCs with high-dose estrogens, and suggest possible directions for future research

    Assessment of the effects of aerobic fitness on cerebrovascular function in young adults using multiple inversion time arterial spin labelling MRI

    Get PDF
    The cross-sectional study investigated the effects of aerobic fitness on cerebrovascular function in the healthy brain. We quantified grey matter (GM) cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), in a sample of young adults within a normal fitness range. Based on existing TCD and fMRI evidence, we predicted a positive relationship between fitness and resting GM CBF, and CVR. Exploratory hypotheses that highe

    Assessment of the effects of aerobic fitness on cerebrovascular function in young adults using multiple inversion time arterial spin labeling MRI

    Get PDF
    This cross-sectional study investigated the effects of aerobic fitness on cerebrovascular function in the healthy brain. Gray matter cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) were quantified in a sample of young adults within a normal fitness range. Based on existing Transcranial Doppler ultrasound and fMRI evidence, we predicted a positive relationship between fitness and resting gray matter CBF and CVR. Exploratory hypotheses that higher V.O2peak would be associated with higher GM volume and cognitive performance were also investigated. 20 adults underwent a V.O2peak test and a battery of cognitive tests. All subjects also underwent an MRI scan where multiple inversion time (MTI) pulsed arterial spin labeling (PASL) was used to quantify resting CBF and CVR to 5% CO2. Region of interest analysis showed a non-significant inverse correlation between whole-brain gray matter CBF and V.O2peak; r = −0.4, p = 0.08, corrected p (p′) = 0.16 and a significant positive correlation between V.O2peak and whole-brain averaged gray matter CVR; r = 0.62, p = 0.003, p′ = 0.006. Voxel-wise analysis revealed a significant inverse association between V.O2peak and resting CBF in the left and right thalamus, brainstem, right lateral occipital cortex, left intra-calcarine cortex and cerebellum. The results of this study suggest that aerobic fitness is associated with lower baseline CBF and greater CVR in young adults

    Predicting the profile of increasing disability in multiple sclerosis

    Get PDF
    Background: Effective therapeutic strategies to preserve function and delay progression in multiple sclerosis (MS) require early recognition of individual disease trajectories. Objectives: To determine the profiles of disability evolution, identify their early predictors and develop a risk score of increasing disability. Methods: We analysed demographic, clinical and magnetic resonance imaging (MRI) data from patients with relapsing MS, Expanded Disability Status Scale (EDSS) score of 3.0–4.0 and follow-up≥2years. Attaining EDSS=6.0 defined increasing disability; relapses and/or MRI defined disease activity. Results: In total, 344 out of 542 (63.5%) patients reached EDSS≥6.0; of these, 220 (64.0%) showed disease activity. In patients with activity, the number of relapses before reaching EDSS 3.0–4.0 predicted increasing disability; age>45 at baseline predicted increasing disability without activity. Combining age and number of relapses increased the risk of and shortened the time to EDSS=6.0. Conclusion: Increasing disability is frequently associated with persistent activity. The high number of relapses identifies early those patients worsening in the presence of activity. Age predicts increasing disability in the absence of activity. The presence of both factors increases the risk of developing severe disability. As this study likely describes the transition to progression, our findings contribute to improving patient management and stratification in trials on progressive MS

    Cerebral metabolic changes during visuomotor adaptation assessed using quantitative fMRI

    Get PDF
    The brain retains a lifelong ability to adapt through learning and in response to injury or disease-related damage, a process known as functional neuroplasticity. The neural energetics underlying functional brain plasticity have not been thoroughly investigated experimentally in the healthy human brain. A better understanding of the blood flow and metabolic changes that accompany motor skill acquisition, and which facilitate plasticity, is needed before subsequent translation to treatment interventions for recovery of function in disease. The aim of the current study was to characterize cerebral blood flow (CBF) and oxygen consumption (relative CMRO2) responses, using calibrated fMRI conducted in 20 healthy participants, during performance of a serial reaction time task which induces rapid motor adaptation. Regions of interest (ROIs) were defined from areas showing task-induced BOLD and CBF responses that decreased over time. BOLD, CBF and relative CMRO2 responses were calculated for each block of the task. Motor and somatosensory cortices and the cerebellum showed statistically significant positive responses to the task compared to baseline, but with decreasing amplitudes of BOLD, CBF, and CMRO2 response as the task progressed. In the cerebellum, there was a sustained positive BOLD response in the absence of a significant CMRO2 increase from baseline, for all but the first task blocks. This suggests that the brain may continue to elevate the supply energy even after CMRO2 has returned to near baseline levels. Relying on BOLD fMRI data alone in studies of plasticity may not reveal the nature of underlying metabolic responses and their changes over time. Calibrated fMRI approaches may offer a more complete picture of the energetic changes supporting plasticity and learning

    Relationship between prolactin plasma levels and white matter volume in women with multiple sclerosis

    Get PDF
    BACKGROUND: The role of prolactin (PRL) on tissue injury and repair mechanisms in multiple sclerosis (MS) remains unclear. The aim of this work was to investigate the relationship between PRL plasma levels and brain damage as measured by magnetic resonance imaging (MRI). METHODS: We employed a chemiluminescence immunoassay for measuring plasma levels of PRL. We used a 1.5 T scanner to acquire images and Jim 4.0 and SIENAX software to analyse them. RESULTS: We included 106 women with relapsing remitting (RR) MS and stable disease in the last two months. There was no difference in PRL plasma levels between patients with and without gadolinium enhancement on MRI. PRL plasma levels correlated with white matter volume (WMV) (rho = 0.284, p = 0.014) but not with grey matter volume (GMV). Moreover, PRL levels predicted changes in WMV (Beta: 984, p = 0.034). CONCLUSIONS: Our data of a positive association between PRL serum levels and WMV support the role of PRL in promoting myelin repair as documented in animal models of demyelination. The lack of an increase of PRL in the presence of gadolinium enhancement, contrasts with the view considering this hormone as an immune-stimulating and detrimental factor in the inflammatory process associated with MS

    A frequency-domain machine learning method for dual-calibrated fMRI mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO2)

    Get PDF
    Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain's metabolic oxygen consumption (CMRO2), which is essential for understanding and monitoring neural function in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been hindered by the lack of robust methods. One MRI method of mapping CMRO2 is based on the simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated methodology has shown promise in the research setting, current analysis methods are unstable in the presence of noise and/or are computationally demanding. In this paper, we present a machine learning implementation for the multi-parametric assessment of dual-calibrated fMRI data. The proposed method aims to address the issues of stability, accuracy, and computational overhead, removing significant barriers to the investigation of oxygen metabolism with MRI. The method utilizes a time-frequency transformation of the acquired perfusion and BOLD-weighted data, from which appropriate feature vectors are selected for training of machine learning regressors. The implemented machine learning methods are chosen for their robustness to noise and their ability to map complex non-linear relationships (such as those that exist between BOLD signal weighting and blood oxygenation). An extremely randomized trees (ET) regressor is used to estimate resting blood flow and a multi-layer perceptron (MLP) is used to estimate CMRO2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are used to train the regressors, with data simulated to cover a wide range of physiologically plausible parameters. The performance of the implemented analysis method is compared to published methods both in simulation and with in-vivo data (n = 30). The proposed method is demonstrated to significantly reduce computation time, error, and proportional bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis pipeline has the potential to not only increase the detectability of metabolic difference between groups of subjects, but may also allow for single subject examinations within a clinical context
    corecore